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1. INTRODUCTION

Approximate Cauchy problem for the Laplace operator LI

Let a be a compact oriented Cl-hypersurface in jR" with Cl boundary if it
has one.

A. Given any pair of continuous functions/, g on a and E > 0 there exists
a function h harmonic in a neighborhood of a such that

I h - f I + I~h - g I< Eon

on a where %n denotes normal derivation, taking the unit normals to vary
on only one side of the surface a.

This is proved by Mergelyan [1] in case a is the image of the unit disc in jR3.
(His proof would work out even for higher dimensions if a is homeomorphic
to a spherical cap.)

B. Here we consider a related problem, an answer to which would
include A. Let E be an arbitrary compact set in jRn and let u E Cl(jRn) and
E > O. Under what kind of restrictions on u and E does there exist a function
h, harmonic in a neighborhood of E, such that I vu - vh I < Eon Ewhere v
is the traditional notation for the gradient?

Further, we ask whether it is possible to replace \Ill by larbitrary continuous
mappings from jRn to jR". Thus we pose the following problem.

C. Let E be an arbitrary compact set in jRn. Under what conditions on E
can it be guaranteed that given any E > 0 and an arbitrary continuous
function V: jRn ---+ [Rn, there exists a U E Cl([R") such that I V - \Ill I < E
onE?

Our answers to Band C are far from complete. In answer to B we prove in
Section 2 the following:
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THEOREM 1. If meas(E) = 0, then for every E > 0 and every U E Cl(IR")2

there exists a function h, harmonic in a neighborhood of E (both h and the
neighborhood depend on E and u), such that IV(U - h)1 < E on E.

From this theorem we deduce A. In Section 3 we answer C in the foHowing
cases: (i) E is totally disconnected; (ii) E is the support of a Jordan arc; and
(iii) E is the support of a nonrectifiable Jordan curve.

In the case where E is a rectifiable Jordan curve, naturally we cannot
approximate arbitrary continuous functions by gradients, since gradients
have their integrals zero along the curve while mere continuous functions need
not. But we prove the best possible: Let y be our curve and let V: /R" --+ !R"
be continuous. Further assume Iv V' dx = O. Then V can be approximated
by '\lu, U E Cl(lRn).

2. Proof of Theorem 1. We may, without loss of generality, assume
U E Co"'(lRn) (infinitely differentiable and with compact support). Then it is
a standard formula (let us work in 1R3 for simplicity, proof for other dimen­
sions being similar)

1 . Llu(y)
U(x) = - -4 J I ' dy.

7T [R" X-)'I

Let us take any a > 0 and E8 = {x; 1 x - Y I < () for some y E E},
I)-neighborhood of E;

1 J' r Llu(y)h8(x) = - --, ' dy,
47T 0<"' -E8 I x - .} !

and

1 r 1
Ko(x) = - -4- " Llu(y) V" I 'I dy

7T 'Eo X - J

where V!l' denotes gradient with respect to the variable x. We now assert that
'\u(x) = '\!Jo(x) + K i5(x), Vx E Eo . It is clear that

1 r LI vu(y) l' 1
\Ill = - - dy = - J Llu(y) \11 . ~ . !~)' =

47r'[R"jx-YI 477 iRS IA-YI

(an application of Fubini and derivative of a product formula)

1 . 1
= - -4 I Llu( y) \''" , . _ ,I dy

7T'lRs IX),
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and hence

N. V. RAO

1 ' 1
yu(x) = Ko(x) - -4 J Au(y) y x I I dy.

1T ~3-Ea X - Y

For x E Ea , y x in the second term of R.H.S. can be brought outside the
integral and so we have

\lu(x) = \lha(x) + Ko(x) on Eo.

We shall now prove that maxE- IKo I = M o~ 0 as 8~ O. Let M = sup IAu [.
Then Mo ~ C . M(meas Eo)1/3 where C is an absolute constant. It is clear that

I Ko(x)! ~ -4
1 J [Au(y)11 y," I 1 I 1dy
1T B(x, r<}nE/j x - y

+ -4
1 J' 1 Au(y)[ \ y x I 1 I I1T Ea-B(x,R} X - Y

M
~ M . R + 41TR2 meas (E/j)

for all R > O. Select R = (meas Eo)1/3, then IKoCx)! ~ (l + 1/41T) - M .
(meas £0)1/3. Q.E.D.

Deduction of A from Theorem 1

From the hypothesis of A, it is immediate that meas a = 0 and by our
Theorem 1, it would follow that given any uE C1(lRn), u and oulen can be
approximated by H and eHlen, respectively, and simultaneously on a where
H is harmonic in a neighborhood of a.

Thus we are reduced to proving that given any E > 0 and any pair of
continuous functions f, g on a, there exists a U E C1(lRn) such that
\ u - f \ + I cui an - g \ < E on a.

At this stage we may assume f = O. For every x E a, there exists a
neighborhood V", and a Ux E C1(lRn) such that Ux = 0 on V", n a and
[at/x/on - g I < E on V", n a. Assuming we have proved this, we can select
out of these V", a finite number, for example, Vi (l ~ i ~ m) covering a and
let {<Pi} be a partition of unity subordinate to {Vi}' Then we set u = Z:::1 <Pitti .
Then u = 0 on a and I culon - g I = I Z:;:1 <PiCot/don)l < Eon a. Now we
shall prove the local version. Given a point on a, we can assume that there
exists a neighborhood of that point in which a would look like z = <p(x, y)
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where cp is Cl (here for simplicity we assume 11 = 3). Let u = (z - cp) . gj
where gl E Cl([Rn). Then u = 0 on a and

au _ / 2 2'en - , cp,; + cpg + 1 . gl

on a. Hence if we select gl such that

we are finished. Q.E.D.

3. Theorems 3 and 4, proved in this section, were first proved in 1R2 using
complex variable methods. The fact that nonrectifiability allows for approxi­
mation but not rectifiability was formerly an intriguing one, since one could
not readily see it in higher dimensions and the complex variable proof was far
from transparent. Now that we have proofs for all dimensions which are
more natural, some of the surprise is lost, but we feel that the proof in [);£2

should still be given, at least for its elegance.
Let C be a nonrectifiable Jordan curve. We may assume the origin is in the

interior of C. Then any complex-valued continuous function can be approxi­
mated by P(z) + Q(l/z) where P, Q are polynomials in one variable. Except
for the l/z part, the rest certainly possesses a primitive in a neighborhood of C
and so we need only prove that l/z can be approximated by au(ex - f(eufey)
where u is a real valued function in Cl([Rn).

In fact l/z can be approximated by linear combinations of other powers
of z. Suppose the contrary. Then there exists a measure fL supported on C
such that

" dfL1-= 1.c z
and Ie zn dfL(z) = 0 for 11 F -1.

From this it immediately follows that Jc dp/O/(g - z) = 1 for z E int C and
= 0 for z E ext C (exterior of C). Under these circumstances, C must be
rectifiable! (Garnett brought this to my notice as one of Wermer's theorems.
Here we give a natural proof of this fact and I am sure it is the same as
Wermer's.)

Let cp be the Riemann mapping from I z I < 1 to int C such that <p(O) = O.
We define a measure v on I z I = 1 such that

It is clear that v exists and is unique. By hypothesis dfL is orthogonal to all
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polynomials and hence all mappings that are holomorphic on int C and
continuous on C. Hence

and consequently

f zn dv(z) =

for all n ?o 0

for n?o O.

Therefore by F and M Riesz' theorem, dv = K(z) dz where

J I K II dz I < 00
Izl~l

and K is holomorphic in the unit disc. But since

for all go E int C,

for I Zo I < 1.

we have

r K(z) dz = 1
JIzl=l ep(z) - ep(zo)

which implies that K(zo) = 27Tiep'(zo). Hence Slzl~l I ep'(z)I [dz I < 00 which
means C is rectifiable.

Theorems 2,3 and 4 have the same conclusion under a different hypothesis
and so let us state the conclusion. Given any E > 0 and V: Rn -4- IRn a
continuous mapping, there exists a u E C1(lRn) such that [ V - Vu I < E on
the set E. Henceforward we shall state only the hypothesis on E in the
enunciation of our theorems.

THEOREM 2. E is totally disconnected.

Proof There exists a 0 > 0 such that for x, y E V and I x - y [ < 0,
[ Vex) - V(y)[ < E.

Furthermore, there would exist Xi (1 ~ i ~ N) such that B(xi ; 0)
(v ~ i ~ N) would cover E. Since E is totally disconnected, there would
exist mutually disjoint open sets Uj (1 ~ j ~ M) covering E and each Uj is
contained in B(Xi ; 0) for some i. Let us select a T(j) so that Uj C B(xT(j) ; 0).

Now let us define hex) = x . v(xT(j) in Uj • If U = U~l Uj , h is well
defined on U and harmonic on U and

I V - \7h I < E on E.
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Remark. Since the complement of E is connected, we can replace our it
by a suitable harmonic polynomial.

THEOREM 3. ex: [0, 1] -+ ~n is a Jordan arc and E = 1 ex: = support of ai,

LEMMA. Let N ;?: 2; Xi (0 ~ i ~ N) be N + 1 distinct points in ~n;

Ci (0 ~ i ~ N) be any N + 1 vectors in ~n. Given any E > 0, Ire can find

vectors Ei (0 ~ i ~ N), Eo = EN = 0, [Ei i < E such that bi - b"d is not
orthogonal to the vector XiX".i-l where hi = Ci + Ei .

There is nothing to the proof of the lemma. We may remark that N ?' 2 is
essential since we do not want to alter Co and CN •

Proof of Theorem 3. Let us select a large integer N with the foHowing
properties: (i) N ;?: 2; (ii) I V(cx(t» - V(c<{t') I < E for I t - t' i < liN. Let
Xi denote cx(i/N) , Ci denote V(cx(ijN» for 0 ~ i ~ N. By the lemma there
exists hi such that! hi - C, I < E, hi - bi+! is not orthogonal to XiXi+! . Let
77i denote the plane passing through the midpoint of XiXi+I and normal to
hi - bi+! for 0 ~ i ~ N - 1. By our construction 77i separates Xi from Xi+! .

Now it is clear that there exist neighborhoods Vi of exU; , ti+l] such that

(1) Vi n Vj = 0 for I i - j I > 1;

(2) I Vex) - V(cx(ti» I = ! Vex) - Ci I < E for X E Vi and consequently
I Vex) - bi I < 2E for X E Ui ; and

(3) 77i+l separates Ui n Ui+l from Ui+l n Ui+2 for 0 OS;; i ~ N - 2.

Let us define hex) = X . bo whenever x E Vo and lies on the same side of 77U

as Xo • And for x E Vo and lying on the opposite side of 770 , Le.. the side of Xl'

we define X . bi + k i where k i is so chosen that x . bo , x . bl + k1 coincide
on 770 n Uo ' Our construction of 770 is such that this is possible.

We move from here to UI • For x E Ul and lying on the same side of 77:

as Xl , we define hex) = X . bi + kl and for x E U1 and lying on the same side
of 771 as x z , we define hex) = x . bz + k z where k z is so chosen that
x . hI + k 1 = X • bz + k 2 on UI n 771 • It is possible since 771 is normal to
bi - b2 • We also see that h agrees with its definition on Uo • It is now dear
how to continue hex) to the whole of U = U:~l U, .

The function h thus defined is continuous on U and piecewise linear and
further I V - '\h I < 2E. Now it only remains to smooth our h to complete
the proof but that is quite standard.

THEOREM 4. cx: [0, 1] -+ Rn is a non-rectifiable Jordan curre. E = \ cx i.

Proof Let us select an integer N ;?: 3 such that I V(cx(t») - V(c,(t'»: < E

for It - t' I < liN. One of the arcs cx[ifN, (i + l)/N] is nonrectifiable and
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there is no less of generality if we assume iX[(N - l)jN, 1] is nonrectifiable.
As before let us define Xi = iX(ijN); Ci = V(iXU/N» for 0 ~ i ~ N - 2 and
Cn- 1 = Co' Applying the lemma of Theorem 3, we get hold of bi such that
bo = Co, bN - 1 = CN - 1 ' and I bi - Ci I < Efor 0 ~ i ~ N - 1 and also that
hi - bi+! is not perpendicular to XiXi+! for 0 ~ i ~ N - 2. Hence by the
same method as in the previous theorem we construct a piecewise linear
continuous function h in a neighborhood U of iX[O, (N - l)/N] such that
I V - Vh I < 3E and further h = X . Co in a neighborhood of X o and
= x . Co + k(const) in a neighborhood of X N - 1 •

Hence if we can prove the existence of a COO-function u with I Vu I < Eon
ex[(N - l)jN, 1] and u - k in a neighborhood of X N - 1 and u = 0 in a
neighborhood of X N = X o , we are done.

Thus we are reduced to the following:

PROPOSITION. Given ex: [0, 1] ~ ~n a nonrectifiable Jordan arc and given
any E > 0, there exists a Coo~function u in Rn such that Ivu I < E on I ex I,
u - 1 in a neighborhood ofex(O) and u = 0 in a neighborhood ofex(1).

Proof of the Proposition. Let N be so large that

N-1 . . + 1 2
r~o Iex (iV) - ex (~)l > -;.

Let Xi denote exU/N). If three consecutive points Xi are colinear, we will drop
the middle one. After doing so, we will reach a stage where we cannot drop
any more. Then we will be left with to = 0 < t1 < ... < tN = 1 (this N
could be less than the previous one) such that of the points ex(ti), no three
consecutive points are colinear. Now let again Xi denote ex(ti) and ai denote
the unit vector in the direction Xi+1Xi for 0 ~ i ~ N - 1. It is clear that

N-1 2
L I Xi - Xi+! I > - .
i=O E

Let Yi be any interior point of the segment XiXi+! to be fixed later. Let 7To

be the plane passing through Yo and normal to ao and let 7Ti be the plane
passing through Yi and normal to ai - ai-1 for 1 ~ i ~ N - 1. Clearly 7Ti

separates Xi from Xi+1' Hence there exist neighborhoods Ui of ex[ti , ti+1]
(0 ~ i ~ N - 1) such that

(1) Vi n V j = 0 for I i - j I > 1; and

(2) 7Ti separates Ui - 1 n Ui+l from Ui n Ui +! for i > O.

Let us define hex) on U = U~-;.1 Ui . Let us start with Uo ' For X E Uo and
lying on the same side of 7To as X o , we define hex) = 1 and for X lying on the
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opposite side in Uo , we define hex) = (x - ,vo) . EGo +- 1. We observe that
h(x1) = (Xl - Yo) EGo +- 1. For x EO Ul and lying on the same side
of 71'1 as Xl' define hex) = (x - Yo) . EGo + 1 and on the opposite
side Thus hex) = (x ~ ,JlI) . Eal + (Yl - Yo) . W o --:- 1. There is no dash
on 7T1 n UI • Thus h(x2) = (x2 - Yl) . Ea1 --;- (Yl - Yo) . EGo + 1. We have
done it before and we can do the same thing again, namely, define h induc­
tively on U. Here we observe that

N-2

h(XN) = (XN - YN-I) . EaN-l + L: (Yi+l - yJ . Wi + 1.
i=O

Hence aSYi ---+ Xi, h(xN) ---+ -E L~~l [Xi - Xi+l I + 1 which is less than -.t.
Hence we can select a YN close to X N on the segment XN-IXN and plane 7TH

passing through YN and orthogonal to X N- 1XN and redefine hex) = h( J'N) oe
that part of UN - 1 which lies on the same side of ?TN as X N • Thus we are able
to define a piecewise linear h on U such that [Vh I < E and h = 1 in a
neighborhood of (X(O) and h = -k in a neighborhood of ()((1) where k > 1.
Let hI = (h + k)j(l + k). Then hI satisfies: (i) hI == 0 in a neighborhood
of (X(l); (ii) hI - 1 in a neighborhood of (X(O); and (iii) I Vhl I < E. Smoothing
hl we prove the proposition. Q.E.D.

Remark. Our general problem in Theorems 3 and 4 was to characterize
compact subsets E of IRa on which any continuous vector-valued function
v: IRn ---+ IR" can be approximated by Vu, u EO C"'(lRn). Dually posed, the
problem takes the following form: Given n measures /Li (l ~ i ~ n),finite and
supported on E such that for every vector Ol = (c:ii) EO IRn, L exiP'i projected on ex
in zero; what conditions on E would ensure that each /Li is separately null. In the
case of totally disconnected sets, we can prove the dual problem directly.
In the case of curves, however, the only proof I know is to first prove
Theorems 3 and 4 and to conclude the truth of their duals.

The Case of a Rectifiable Jordan Curve

THEOREM 5. Let ex: [0, 1] ---+ IRn be a rectifiable Jordan curce and V be any
continuous function from IRn to IRn such that f~ L;~l Vi dXi = J~ v . dx = O.
Then given any E > 0, there exists a u EO C,,"o(IR") such that I V - Vu i < {O

on f Ct I.

Outline of Proof Subtracting grad v(cx(O)) . x from V, we may assume
V(ex(O)) = O. Then there exists a 0 > 0 such that for 0 :(; t ~ S, i V(cx(t»)[ < {o,

Hence

\rV· ~; dt I = I( V· :~ dt I ~ E
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arc length of a[O, 0] = exl . E, for instance. Evidently we can select 0 = to <
tl < ... < tN = 1 such that I L:-/ V(a(ti» . (a(ti) - a(ti+l»! < 2E . aI,
and I V(a(t» - V(a(ti» I < E for t i ~ t ~ ti+l' Since I V(a(to»I and
I V(a(tN » I = t V(a(O» I are < E, exactly as we have done in Theorem 4,
we can prove the existence of a piecewise linear continuous function u in a
neighborhood of a[o, 1] such that I V - Vu I < E and further u = 0 in a
neighborhood of a(0) and u == a constant K in a neighborhood of ex(1) = a(O).

Since K can be selected as close to L:~l V(a(t;» . (a(ti) - a(ti+l» as we
please, we may assume I K t < 2E . al .

Now our problem is to descend from K to 0 along ex from a(O) to a(o)
together with the condition that I Vu I should be small. This is the same
problem as one had in the proposition of Theorem 4. Since the length of
cx[O, 0] is al and I K I < 2E . a, we can do it (as in the proposition quoted)
with I Vu I < 4E. Thus we constructed a piecewise linear continuous u in a
neighborhood of I ex [ such that I V - Vu I < 4E. Q.E.D.

Remark. In all these approximations u was harmonic except for a set of
measure zero, in fact a finite number of plane sections. But of course
smoothing certainly decreases the set of points of harmonicity of u. Certainly
we came very close to proving what one did in the case of totally disconnected
sets, namely u is harmonic in a neighborhood of I ex I. But unfortunately
we could not, without the additional assumption that meas I a I = 0, thus
appealing to Theorem 1. In the case of the rectifiable Jordan curve, the
condition of measure zero is fulfilled.

It would be desirable to prove, in the case of an arbitrary Jordan arc or
curve (not necessarily rectifiable) that Vu, U E coo(~n) can be replaced by VH
where H is harmonic in a neighborhood of the support of the curve.
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